采用逐差法处理数据。后面的四项分别减去前面的四项,即N i+4 - N i =2被波长。i=1,2,3,4。取N i+4 - N i 的平均值,再除2就是波长。波长乘以频率就是波速了。
驻波法(共振干涉法)测波长和波速 (1)根据原理图连接好仪器,示波器上接通道1,测量前移动游标,将S从一端缓慢移向另一端,并来回几次,观察示波器上的讯号幅度的变化,了解波的干涉现象。
共振干涉法测量声速 假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。在上述假设条件下,发射波ξ1=Acos (ωt+2πx /λ)。
共振干涉是调节频率,找出共振频率,然后计算声速。相位法根据始波和发射波的相位差,计算声速。时差法所用为脉冲波,可人为改变接收器到发射器的距离,测量脉冲发射到接收的时间差,用距离改变量除以时间改变量即可,优点是人为因素少,测量精度高,缺点(对于实验教学来说)涉及的内容少,操作太简单。
1、看你测量的是什么数据了,如果测量的数值是声速,用平均值就可以了;如果是别的数据,则要根据公式计算吧。
2、声速测定逐差法公式:λi=2/Xn-1-Xn/。逐差法是针对自变量等量变化,因变量也做等量变化时,所测得有序数据等间隔相减后取其逐差平均值得到的结果。其优点是充分利用了测量数据,具有对数据取平均的效果,可及时发现差错或数据的分布规律,及时纠正或及时总结数据规律。
3、一般要利用光帮助测定。如选定一个距离(比较远),在目标点同时放光(或烟雾)和声音,在预定测量点看到光(或烟雾)时开始计时,听到声音时计时结束,时间差即为声音的传播时间,用已知的距离除以这个时间得到的就是声速。
声速测量逐差法处理数据不会出现负数。这是因为声速是一个物理量,它的值必须为正数,而逐差法是通过求取两个时间间隔内声波传播的距离差来计算声速的,因此得到的差值也应该是正数。如果在处理数据时出现了负数,通常是因为实验数据的误差或测量不准确等原因导致的,需要重新进行测量或数据处理。
首先用逐差法求出声波波长和误差。其次在利用谐振频率f0计算声波波速和误差。最后再用相位的比较法测波长和声速即可得出实验误差了。
一般要利用光帮助测定。如选定一个距离(比较远),在目标点同时放光(或烟雾)和声音,在预定测量点看到光(或烟雾)时开始计时,听到声音时计时结束,时间差即为声音的传播时间,用已知的距离除以这个时间得到的就是声速。
如果测量的数值是声速,用平均值就可以了;如果是别的数据,则要根据公式计算吧。例如计算加速度,测量的是ssssss6,由公式:s4-s1=3aT^2;s5-s2=3aT^2; s6-s3=3aT^2;求出每一项的加速度,再求平均值得 a=[(s4+s5+s6)-(s1+s2+s3)]/9T^2。
逐差法的好处是可以利用全部数据,而不仅仅是起始、终点` 的两个数据,与具体的实验内容无关。
声速测定逐差法公式:λi=2/Xn-1-Xn/。逐差法是针对自变量等量变化,因变量也做等量变化时,所测得有序数据等间隔相减后取其逐差平均值得到的结果。其优点是充分利用了测量数据,具有对数据取平均的效果,可及时发现差错或数据的分布规律,及时纠正或及时总结数据规律。
1、一般说来,温度越高,声速越快,实验测量结果表明,超声波在10~35℃的纯净水中的传播速度随着温度的升高而升高。
2、经过将原来的模型变形为ln(tt-c)=lntt0-bx,实际上是Y=MX+B的线性公式,我们就可以应用最小二乘法对总体数据进行拟合。同时,为了验证转换常数的引入对于具体曲线拟合的影响,我们标志出了两条拟合曲线,一条是未采用转换常数的拟合曲线,一条是采用了最佳转换常数(根据误差统计曲线确定)的拟合曲线。
3、其上装有指针,并通过定位螺母套在丝杆上,有丝杆带动作平移)、带刻度的手轮等。接收器的位置由主、尺刻度手轮的位置决定。
4、确认管道长度已使系统达到共振状态,此时示波器上应显示出稳定且明显的正弦波形。 记录数据 在示波器上读取并记录波长和频率。 使用公式: [ v = f lambda ] 计算声速,其中(v)是声速,(f)是频率,(lambda)是波长。
5、测量声速最简单、最有效的方法之一是利用声速v 、振动频率f和波长λ之间的基本关系,即实验时用结构相同的一对(发射器和接收器)超声压电陶瓷换能器,来作声压与电压之间的转换。利用示波器观察超声波的振幅和相位,用振幅法和相位法测定波长,由示波器直接读出频率f。