牛顿环测量数据处理(牛顿环测量数据记录与处理表)

2024-10-04

牛顿环试验中为什么要测量多组数据且采用逐差法处理数据?

逐差是为了降低误差(主要实偶然误差),比如你第一次测量的误差很大,如果用这组数据就肯定不行,不可能每次测量都有很大的误差(如果实这样,这就是你的操作有问题了)而测量的偶然误差是分布在真实值左右,逐差就能降低误差,结果比较接近真实值。

逐差法是针对自变量等量变化,因变量也做等量变化时,所测得有序数据等间隔相减后取其逐差平均值得到的结果。其优点是充分利用了测量数据,具有对数据取平均的效果,可及时发现差错或数据的分布规律,及时纠正或及时总结数据规律。他也是物理实验中处理数据常用的一种方法。

逐差法求平均值:按照线性关系即一次方关系增加或减少的量,等间隔地测量了若干个数据。假设有6个数字,xxxxxx6,将这些数据分成前、后两组,每组中对应的数据相减,再求平均数:(x4+x5+x6)-(x1+x2+x3)/3。其结果为5个间隔的平均增加量。

牛顿环实验,后面数据是多少

一般实验室理论值500米。如果只是为了验证牛顿环的基本原理进行简单的实验,误差不超过20%就行。明环半径 r=根号下(k - 1/2)Rλ) k=1,2,.. 暗环半径 r=根号下(kRλ) k=0,1,2,... 其中k代表第几条牛顿环,R代表凸透镜的曲率半径,由公式可知 R 越大环的半径越大。

用牛顿环测透镜的曲率半径。光的干涉是光的波动性的一种表现,若将同一点光源发出的光分成两束,各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象,干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度,厚度和角度。

收集数据:在实验中,需要记录不同位置的牛顿环的直径。一般来说,需要在不同的角度和位置测量多个牛顿环的直径,以便获得足够的数据来进行分析。数据处理:将收集到的牛顿环直径数据进行处理,得到每个牛顿环的中心位置和直径。可以使用图像处理软件来识别牛顿环的中心位置,并测量其直径。

测量结果表示:R=8946m ,E=62%。用一个曲率半径很大的凸透镜的凸面和一平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环;而用单色光照射时,则表现为一些明暗相间的单色圆圈。这些圆圈的距离不等,随离中心点的距离的增加而逐渐变窄。

一般情况下,牛顿环实验的公式:就是R=(Dm-Dn)/ 4(m-n)λ。m和n都是表示级数,D是直径,λ当然是波长。光的一种干涉图样,是一些明暗相间的同心圆环。例如用一个曲率半径很大的凸透镜的凸面和一平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环。

在牛顿环实验中,首先,你需要预热钠光源5分钟后,确保读数显微镜的物镜对准牛顿环中心。调整显微镜,观察清晰的明暗条纹,确保条纹与叉丝之间无视差。

牛顿环从21到30环数据处理

因为牛顿环中心的圆点并非绝对的一个点,它其实也是一系列同心圆。放大倍数过高会导致你能看清这些圆,从而无法确定环的干涉级数。实验室中一般放大倍数在30到50倍之间。牛顿环实验是这样的:取来两块玻璃体,一块是14英尺望远镜用的平凸镜,另一块是50英尺左右望远镜用的大型双凸透镜。

而选择的两个级次有选择25和15的,也有选择30和20的,其级次差都是10级。

记下显微镜读数即该暗环标度X30,再缓慢转动副齿轮,使纵丝依次对准第2110等暗环环纹中央,记下每次暗环的标度X25, X20, X15, X10。继续转动副齿轮,使纵丝经过牛顿环中心暗斑到另一方,对准第10~30环,依次记下相应的标度X10,X15, X20,X25,X30。

实验内容要求: 接通钠光源,预热5分钟后,使读数显微镜物镜对准牛顿环的中央部分。 调节读数显微镜,看到清楚的明暗条纹,且条纹与叉丝无视差。

在界面上发生反射,是有半波损失的。实验注意事项: 聚焦时,G的位置距物镜约为1厘米处,不要盲目操作,以免压断反光玻璃片。 测量时不能振动,读数显微镜不可摇晃,且勿数错数。 不可用手抚摸牛顿环仪光学表面,若不清洁,要用专门的揩镜纸擦拭。

平面玻璃接触。牛顿环采用m-n=30环是因为平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环;而用单色光照射时,则表现为一些明暗相间的单色圆圈。

大学物理牛顿环数据处理?

1、先求出每次测量的Dm-Dn的值;再求出8次测量的平均值。在高中物理“求匀变速直线运动物体的加速度”实验中分析纸带。运用公式△X=at^2;X3-X1=X4-X2=Xm-Xm-2。当时间间隔T相等时,假设测得 X1,X2,X3,X4 四段距离,那么加速度:a=【(X4-X2)+(X3X1)】/2×2T2。

2、用牛顿环测透镜的曲率半径。光的干涉是光的波动性的一种表现,若将同一点光源发出的光分成两束,各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象,干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度,厚度和角度。

3、深入理解的钥匙/: 通过牛顿环,我们得以解锁光的干涉秘密,这是一把理解光学原理、提升实验技能的钥匙。牛顿环实验不仅是一次视觉盛宴,更是一次科学探索的旅程。它教会我们如何通过实验观察和数据处理,去揭示光的深层次性质。让我们在每一次调整和观察中,更接近光的本质真相。